THERMODYNAMIC INSTABILITIES IN MACHINING PROCESSES.

II. NUMERICAL INVESTIGATION OF STABILITY

M. L. Kheifets

UDC 536.75:621.90

Abstract

A numerical investigation of methods that intensify machining by additional mechanical and thermal actions is performed. Criteria describing the formation of stagnant dissipative structures with thermodynamic instabilities of the technological system and a calculation procedure for machining regimes that ensures stable parameters of the process are proposed.

Numerical Solution. Investigation of the vector fields of distributed characteristics of machining processes in formation of vortex dissipative structures is currently difficult. Therefore, to experimentally check a mathematical model, we chose a method of machining that permits control of thermodynamic processes in the shaping zone through additional mechanical and thermal actions, i.e., rotational cutting with preheating of the cut layer (Fig. 1) [1]. Study of the components of the cutting force in free rotation of the rotational tool and comparison of the results with other methods of machining permit an analysis of the stability of the processes.

The rotation and vortices of the vector field flow for the force \mathbf{P} are described by the expression

$$
\begin{equation*}
\nabla \times \mathbf{P}=\mathbf{i}\left(\partial P_{z} / \partial y-\partial P_{y} / \partial z\right)+\mathbf{j}\left(\partial P_{x} / \partial z-\partial P_{z} / \partial x\right)+\mathbf{k}\left(\partial P_{y} / \partial x-\partial P_{x} / \partial y\right) . \tag{1}
\end{equation*}
$$

The term $\mathrm{j}\left(\partial P_{x} / \partial z-\partial P_{z} / \partial x\right)$ in expression (1) permits the description of the free rotation of the rotational tool edge in the $X O Z$ plane by the moment \mathbf{M} (Fig. 1). The moment of the cutting force component \mathbf{P}_{z} relative to the arm that is formed by the travel of the cutting edge of the tool ∂x under the action ∂P_{x} or the force component \mathbf{P}_{x} relative to the travel ∂z under the action ∂P_{z} can be described, according to the physical meaning, by the vector product [2]

$$
\begin{equation*}
M=C_{M}\left|\mathbf{P}_{x} \times \mathbf{P}_{z}\right|=C_{M} P_{x} P_{z}=C_{M} M_{x z} \tag{2}
\end{equation*}
$$

Measurements of the cutting force components P_{x}, P_{y}, and P_{z} were performed in machining with a regular and a round cutting tool - nonrotating, compulsory rotating, and self-rotating in different planes depending on the scheme and angles of installation [3]. To intensify cutting, use was made of plasma preheating [4] (Fig. 1). Consideration was given to machining of structural steels, titanium alloys, chromium-nickel steels, surfacings, and powder materials, which can give an idea of the influence of not only the chemical composition but also structures, pores, and inhomogeneities of materials on the stability of the cutting process. Tables $1-4$ compare experimental data with the results of different authors [3-9].

Studying the experimental data shows that, to describe the process of cutting of structural steels (Table 1) with a regular tool, it is appropriate to use the approximate formula [5]

$$
\begin{equation*}
P_{z}=C_{3} t S^{0.7} \tag{3}
\end{equation*}
$$

In forced cutting with a round tool the exponents x_{i} and y_{i} change due to a change in the cross section of the cut layer. Forced travel of the cutting edge of the round tool permits control of the cross section of the cut layer, and exponents of the cutting depth t and feed rate S that are close to $x_{i}=1.0$ and $y_{i}=0.7$ are obtained in self-rotation

Polotsk State University, Novopolotsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 67, Nos. 1-2, pp. 146-153, July-August, 1994. Original article submitted December 18, 1992.

Fig. 1. Scheme of rotational machining with heating of the cut layer: 1) machined part; 2) rotational tool; 3) lubricant feed; 4) plasmatron.
of the rotating tool if one describes the process by the cutting moments \mathbf{M} of (2) in the plane in which the rotation occurs:

$$
\begin{equation*}
M=C_{M} t S^{0.7} \tag{4}
\end{equation*}
$$

To describe the process of cutting of titanium alloys (Table 2) with a regular tool, Eq. (3) is also suitable. For forced cutting with a round tool, even in self-rotation of it, the exponents x_{i} and y_{i} change in the force and moment equations, since in tool rotation the cutting speed increases, which leads to the formation of a step (cyclic) chip, which fails to be removed by the rotating tool.

In cutting chromium-nickel steels (Table 3) with a regular tool, especially in using additional plasma heating, the cross section of the cut changes periodically, which does not permit the use of Eq. (3) to describe cutting processes with heating. A rotational tool makes it possible to rapidly remove the chip and permits a description of cutting processes by the moment equations (4). The exceptions in this case are materials containing pores and inclusions, for example, surfacings, in machining of which with a rotating tool we observe no stabilization of the process of chip formation.

In cutting steel and chromium-nickel powder materials (Table 4) with a regular tool the presence of pores alters the cross-sectional area of the cut. In rotational cutting of powder materials there is no such intense pore crumping and, to describe it, it is appropriate to use moments of cutting whose exponents x_{i} and y_{i} are close to the exponents in Eq. (4).

Analysis of the experimental data on the components of the cutting force P_{x}, P_{y}, and P_{z} in machining different materials showed that, to describe stable cutting processes with small corrections for the material (its physicomechanical properties, structure, and chemical composition), it is appropriate to use the force equation (3) and moment equation (4).

We consider processes that occur in the zone of chip formation. For this we investigate parameters similar to stresses in machining with a regular tool: $\sigma_{e}=P_{z} / S t k_{l}[10]-$ similar to effective stresses at which plastic flow of the metal commences; $s_{\nu}=P_{z} / S t$ [11]-similar to conventional stress that characterize the intensity of the process, and $\sigma_{\mathrm{u}}=\sigma_{e} \sigma_{v} /\left(\sigma_{e}+\sigma_{v}\right)=P_{z} /\left(S t\left(k_{l}+1\right)\right)[12]-$ similar to the ultimate strength of the material.

Results of the investigations (Table 5) showed that in machining with a self-rotating round tool it is appropriate to describe the stressed state in the cutting zone by parameters that characterize stresses on portions of untit length in the directions of the fundamental motion v, i.e., by σ_{z}, and the travel of the cutting edge v_{r}, i.e.,

TABLE 1. Values of the Coefficients and Exponents of the Components of the Cutting Force $P=C_{i} t^{x_{i}} S^{y_{i}} \nu^{z_{i}}{ }^{k_{i}}$, Roots of the Characteristic Equation p_{1}, p_{2}, and Stability of the Cutting Process in Machining 45 Steel

TABLE 2. Values of the Coefficients and Exponents of the Components of the Cutting Force $P=C_{i} t^{x_{i}} S^{y_{i}} \nu^{z_{i}}$, Roots of the Characteristic Equation p_{1}, p_{2}, and Stability of the Cutting Process in Machining Titanium Alloys

p	C_{i}	x_{i}	y_{i}	z_{i}	p_{1}	p_{2}	Stability	Trajectories
Regular tool VT14 alloy								
P_{x}	45	1.05	0.40	-0.10				
P_{y}	90	1.05	0.60	-0.10				
P_{z}				0.09	-0.110	1.710	US	P_{y} / P_{z}
Round tool Self-rotating in the XOY plane VT1-0 alloy								
P_{x}	790	0.42	1.00	-0.30	VT1-0 all	y		
P_{y}	490	0.54	0.80	-0.10				
	480	0.80	0.84	-0.10	0.127	1.474	UN	P_{y} / P_{z}
P_{z}	480	0.80	0.84		0.272	2.328	UN	$M_{x y} / P_{\underline{z}}$
$P_{x} P_{y}$	387100	0.96	1.80	-0.40			UN	
$P_{y} P_{z}$	235200	1.34	1.64	-0.20	0.294	2.846	UN	$M_{x y} / M_{y z}$

by σ_{x}, and, with allowance for the interdependence of the motions v and v_{r} through the cutting moment \mathbf{M}, by the parameters $\sigma_{x z}=\sigma_{x} \sigma_{z}$ [2]. For structural steels it is appropriate to describe approximately the parameters of stresses in machining with additional travels of the edge as follows:

$$
\begin{equation*}
\sigma_{x z}=C_{\sigma} S^{-0.3} \tag{5}
\end{equation*}
$$

and in machining with a regular tool [10] as follows:

$$
\begin{equation*}
\sigma_{z}=C_{\sigma}=\text { const } \tag{6}
\end{equation*}
$$

We represent the quantity $t S^{0.7}$ in the force equation (3) and moment equation (4) as numbers by using the stresses (5) and (6): the Reynolds number $\mathrm{Re}=\nu t / \nu$, which describes the laminar-to-turbulent transition, and the Prandtl number $\operatorname{Pr}=\nu / \omega$, which describes the ability of heat to propagate in a given medium, where the kinematic viscosity factor v describes the tangential stresses:

$$
\begin{gather*}
\operatorname{Re}^{*}=t S^{0.7}=\frac{v t S}{v S^{0.3}}=\frac{v t}{\left(C_{\sigma} / \sigma_{x z}\right)(v / S)}=\frac{v t}{\left(\sigma_{z} / \sigma_{x z}\right)(v / S)}=\frac{v t}{v^{*}}=\frac{v t}{\omega \operatorname{Pr}^{*}}=\frac{\mathrm{Pe}}{\operatorname{Pr}^{*}}, \tag{7}\\
v^{*}=\left(C_{\sigma} / \sigma_{x z}\right)(v / S) .
\end{gather*}
$$

Equation (7) shows that for constant removal of material per unit time $v t=$ const upon increase in Re^{*} and decrease in Pr^{*} to a critical value vortices form. This occurs as a result of a decrease in C_{σ}, i.e., the constant of the machined material, owing to heating of the cutting zone when the material has no way of traveling freely in the cutting zone $\sigma_{x z} \rightarrow 0$ or as a result of an increased cutting speed v, which also involves heating of the cutting zone, when there is no way for the tool to additionally travel in a direction of S not coinciding with the direction of the fundamental motion ν.

Thus, the force equation (3) and moment equation (4) as well as the stresses (5) and (6) in the zone of chip formation permit the description of stable processes and make it possible to determine from Re^{*} and Pr^{*} the formation of thermodynamic instabilities such as outgrowths, adiabatic shifts, and others.

TABLE 3. Values of the Coefficients and Exponents of the Components of the Cutting Force $P=C_{i} i^{x_{i}} S^{y_{i}} v^{z_{i}} w^{k_{i}}$, Roots of the Characteristic Equation p_{1}, p_{2}, and Stability of the Cutting Process in Machining Chromium-Nickel Steels

P	C_{i}	x_{i}	y_{i}	z_{i}	k_{i}	p_{1}	p_{2}	Stability	Trajectories
Regular tool 18Kh2N4MA									
P_{y}	2100	0.44	0.54	0.01		0.061	1.229	UN	P_{y} / P_{z}
P_{z}	4200	0.75	0.75	-0.19					
With plasma heating,$18 \mathrm{Kh} 2 \mathrm{~N} 4 \mathrm{MA}$									
P_{y}	8100	0.29	0.85	0.01	-0.24				
P_{z}	8300	0.64	1.21	0.20	-0.36	0.143	1.347	UN	P_{y} / P_{z}
With plasma heating, 30 Kh 2 N 2 MA steel									
P_{y}	7475	0.70	0.50	-0.10	-0.70				
					-0.30	0.067	1.633	UN	P_{y} / P_{z}
P_{z}	3753	1.20	0.70	-0.06	-0.30				
With plasma heating, 12 Kh 18 N 10 T steel									
P_{y}	2019	0.95	1.10	-0.60	-0.45	,			
P_{z}	3826	0.95			-0.30	0.113	1.937	UN	P_{y} / P_{z}
Round tool, self-rotating in the $Y O Z$ and $X O Z$ planes, $\mathrm{Np}-30 \mathrm{KhGSA}$ wire surfacing									
P_{x}	1560	0.90	0.18	0.06					
P_{y}	1690	0.78	0.13	0.05				UN	P_{y} / P_{z}
P_{z}	2560	0.83	0.21	-0.11		-0.055	1.015	UN	P_{y} / P_{z}
Self-rotating in the XOY plane,2 Kh 13 steel									
P_{x}	97	0.37	0.51	-0.43					
P_{y}	1000	0.65	0.28	-0.30		-0.001	1230	US	P_{y} / P_{z}
P_{z}	1100	0.95	0.41	-0.38		-0.001			
						0.218	1.522	UN	$M_{x y} / P_{z}$
$P_{x} P_{y}$	97000	1.02	0.79	-0.73		0.263	2.127	UN	$M_{x y} / M_{y z}$
$P_{y} P_{z}$	1100000	1.60	0.69	-0.68					$M_{x y} / M_{y z}$

Investigation of Stability. To investigate thermodynamic instabilities in machining processes, we consider the changes in the cutting force components P_{z} and P_{y} :

$$
\begin{aligned}
& d P_{z} / d \tau=C_{3} t^{x_{3}} S^{y_{3}} v^{z_{3}}\left(x_{3} / t+y_{3} / S+z_{3} / v\right) \approx P_{z}\left(x_{3} / t+y_{3} / S\right), \\
& d P_{y} / d \tau=C_{2} t^{x_{2}} S^{y_{2}} v^{z_{2}}\left(x_{2} / t+y_{2} / S+z_{2} / v\right) \approx P_{y}\left(x_{2} / t+y_{2} / S\right)
\end{aligned}
$$

owing the smallness of z_{2} and z_{3}. Special equilibrium points $\left\{(1 / t)_{c} ;(1 / S)_{c}\right\}$ at which P_{z} and $P_{y}=$ const permit, from the character of the trajectory

TABLE 4. Values of the Coefficients and Exponents of the Components of the Cutting Force $P=C_{i} x^{x_{i}} S^{y_{i}}{ }^{z_{i}}$, Roots of the Characteristic Equation p_{1}, p_{2}, and Stability of the Cutting Process in Machining Powder Materials

P	C_{i}	x_{i}	y_{i}	z_{i}	p_{1}	p_{2}	Stability	Trajectories
Regular tool 20 Kh 9 p powder								
P_{x}	180	0.78	0.00	-0.09				
P_{y}	1580	0.40	0.91	-0.05				
					0.261	1.489	UN	P_{y} / P_{z}
P_{z}	5700	0.84	0.94	-0.12				
Round tool self-rotating in the $Y O Z$ and $X O Z$ planes PG-10N-01 powder								
P_{x}	2850	0.47	0.14	-0.03				
P_{y}	4200	0.48	0.10	-0.02				
					-0.058	0.678	US	P_{y} / P_{z}
P_{z}	2770	0.52	0.19	-0.12				
					-0.052	1.142	US	$P_{y} / M_{x z}$
$P_{y} P_{z}$	11634000	1.00	0.29	-0.14				
$P_{x} P_{z}$	7894500	0.99	0.33	-0.15	-0.033	1.313	US	$M_{y z} / M_{x z}$

TABLE 5. Values of the Coefficients and Exponents of $C_{i} t^{x_{i}} S^{y_{i}} v^{z_{i}}$, the Chip Shrinkage k, and the Parameters of the Stresses σ in Cutting 45 Steel with a Round Tool, Self-Rotating in the YOZ and XOZ Planes

σ	C_{i}	x_{i}	y_{i}	z_{i}
$k_{l}=k_{a}$	2.47	0.42	-0.39	-0.24
$\sigma_{e x}=P_{x} k_{a} / t$	1680	0.02	0.00	-0.22
$\sigma_{e z}=P_{z} / S k_{l}$	304	-0.01	-0.28	-0.20
$\sigma_{e x z}=M_{x z} k_{a} / S t k_{l}$	510000	0.01	-0.28	-0.02
$\sigma_{v x}=P_{x} / S$	680	-0.40	0.39	0.02
$\sigma_{v z}=P_{z} / S$	750	0.41	0.67	-0.04
$\sigma_{v x z}=M_{x z} / S t$	0.01	-0.28	-0.02	
$\sigma_{u x z}=M_{x z} /\left(S t\left(k_{l} / k_{a}+1\right)\right)$	255000	0.01	-0.28	-0.02

$$
\frac{d P_{y}}{d P_{z}}=\frac{P_{y}\left(x_{2} / t+y_{2} / S\right)}{P_{z}\left(x_{3} / t+y_{3} / S\right)}
$$

judgment of the stability of an equilibrium with the relative deviations [13]

$$
(1 / t)_{\Delta}=(1 / t)-(1 / t)_{c}, \quad(1 / S)_{\Delta}=(1 / S)-(1 / S)_{c}
$$

To investigate the stability, we linearize derivatives of the relative deviations, assuming that the changes in $(1 / t)_{\Delta}$ and $(1 / S)_{\Delta}$ are proportional to the changes in P_{z} and P_{y} :

$$
d(1 / t)_{\Delta} / d \tau=x_{3}(1 / t)_{\Delta}+y_{3}(1 / S)_{\Delta} \quad \text { and } \quad d(1 / S)_{\Delta} / d \tau=x_{2}(1 / t)_{\Delta}+y_{2}(1 / S)_{\Delta}
$$

The solutions of the equations in the form

$$
(1 / t)_{\Delta}=A_{1} \exp \left(p_{1} \tau\right)+A_{2} \exp \left(p_{2} \tau\right) \quad \text { and } \quad(1 / S)_{\Delta}=B_{1} \exp \left(p_{1} \tau\right)+B_{2}\left(\exp \left(p_{2} \tau\right)\right.
$$

are determined by the roots of the characteristic equation

$$
\begin{equation*}
p^{2}-\left(x_{3}+y_{2}\right) p+\left(x_{3} y_{2}-x_{2} y_{3}\right)=0 . \tag{8}
\end{equation*}
$$

The type of equilibrium at the point $\left\{(1 / t)_{c} ;(1 / S)_{c}\right\}$ depends on the roots p_{1} and p_{2} of Eq. (8).
Investigation of the stability of cutting processes for different machined materials was performed from experimental data (see Tables 1-4). Consideration was given to characteristic equations for the components of the cutting forces and moments that determine the behavior of the trajectories in machining with a regular and a round tool - nonrotating, compulsory rotating, and self-rotating in different planes - as well as in using preheating of the cut layer. As a result of calculations two types of equilibrium states are obtained among the six possible [13].
p_{1} and p_{2} Are Real Positive Numbers - Unstable Node (UN). With an unstable regime of nodal type the system moves away from the equilibrium position, performing aperiodic self-exciting motion, which may become periodic vibrations with an increasing amplitude under the known conditions. This indicates the regime of selfexciting vibrations whose phase trajectory has the form of an untwisting spiral. In real systems the increase in the amplitude is limited by physical processes, as a result of which stable periodic motion with a time-constant amplitude arises. He phase trajectory twists on an isolated closed curve corresponding to stable autovibrations and is the limiting cycle. This type of phase trajectory, as was shown earlier, is realized in periodic outgrowth formation, step (cyclic) chip formation, and formation of other thermodynamic instabilities.
p_{1} and p_{2} Are Real Numbers with Different Signs - Unstable Saddle (US). With small deviations from the equilibrium position in an unstable saddle-type regime the system begins to move away in a prescribed direction. There are always two new stable states that the system approaches. Instability of this type in metal cutting has a qualitatively different structural level and is manifested in a stable process in the form of shifts on the planes of chip formation by a dislocation mechanism [11] or other mechanisms [14].

Study of instabilities in processes of cutting structural steels (see Table 1) showed that in the absence of rotation of the tool stable chip formation is described by phase trajectories of cutting force components. Forced rotation and self-rotation of the tool call for a description of the process by trajectories of cutting moment components, which the cutting force components can be confined just to a plane that is perpendicular to the additional travel of the cutting edge.

Stable chip formation in cutting of titanium alloys (see Table 2) is disturbed owing to the formation of step (cyclic) chips at high cutting speeds, as demonstrated by the phase trajectories of the components of forces and moments.

A change in the cross section of a chip and its packing [4] at the cutting edge in machining of chromiumnickel steels with heating (see Table 3) have an effect on the phase trajectories of the cutting force components. Rotation of the tool alters the type of cutting process instability but it stabilizes chip formation insufficiently.

Rotation of the tool in machining steel and chromium-nickel powder materials (see Table 4) stabilizes completely the process of chip formation, as confirmed by the phase trajectories of the components of cutting forces and moments.

A small difference of the roots p_{1} of the characteristic equations from zero demonstrates low structural stability of the cutting system, for which the structure of the phase portrait changes with small changes in parameters of the process. This is especially noticeable with a scheme of the installation that provides low stability of self-rotation for the tool in the $X O Y$ and $Y O Z$ planes (Table 1) and with insufficient stabilization of chip formation by a stably rotating tool in the $X O Y$ plane or in the $Y O Z$ and $X O Z$ phases (Table 3).

Thus, low sructural stability of the technological system demonstrates the need for a detailed investigation of thermodynamic instabilities in developed processes of machining of both new and traditional materials.

NOTATION

\mathbf{P} and $\mathbf{P}_{x}, \mathbf{P}_{y}, \mathbf{P}_{z}$, cutting force and its components; \mathbf{M} and $\mathbf{M}_{x y}, \mathbf{M}_{x z}, \mathbf{M}_{y z}$, cutting moment and its components; C_{M}, proportionality factor between a cutting force component and the travel of the cutting edge under the action of and in the direction of this component; C_{i}, empirical coefficient taking account of machining conditions; x_{i}, y_{i}, z_{i}, and k_{i}, empirical exponents; t, cutting depth; S, rate of the tool feed; u, ratio of the velocity of the additional travel of the cutting edge ν_{r} to the velocity of the fundamental motion of mwachining $v ; w$, plasmatron power; σ_{e} and σ_{v}, effective and conventional stresses; σ_{u}, ultimate strength; σ_{x}, σ_{z}, and $\sigma_{x z}$, parameters of stresses in the directions of v_{r}, v, and $M ; k_{l}$ and k_{a}, longitudinal and traverse shrinkage of a chip; C_{σ}, empirical coefficient, i.e., constant of the machined material; Re, Pr, and Pe, Reynolds, Prandtl, and Peclet numbers; v, kinematic viscosity; ω, thermal diffusivity of the material; $A_{1}, A_{2}, B_{1}, B_{2}$, integration constants in solving differential equations; p_{1} and p_{2}, roots of the characteristic equation; τ, current time.

REFERENCES

1. P. I. Yashcheritsyn, A. V. Borisenko, N. N. Popok, and M. L. Kjeifets, Dokl. Akad. Nauk Belarusi, 36, No. 5, 429-432 (1992).
2. P. I. Yashcheritsyn, A. V. Borisenko, and M. I. Kheifets, Izv. Akad. Nauk Belarusi, No. 1, $48-53$ (1992).
3. P. I. Yashcheritsyn, A. V. Borisenko, I. G. Drivotin, and V. Ya. Lebedev, Rotational Cutting of Materials [in Russian], Minsk (1987).
4. A. N. Reznikov (ed.), Cutting with Plasma Heating [in Russian], Moscow (1986).
5. B. S. Balakshin (ed.), Adaptive Control of Machine Tools [in Russian], Moscow (1973).
6. Yu. A. Novoselov and N. N. Popok, Mashinostroenie, No. 12, 33-37, Minsk (1987).
7. E. P. Konovalov and G. F. Shaturov, Vestsi Akad. Navuk BSSR, Ser. Fiz.-Tekhn. Navuk, No. 2, 56-60 (1973).
8. N. S. Zhuchkov, P. D. Bespakhotnyi, A. D. Chubarov, et al., Raising the Efficiency of Cutting of Blanks of Titanium Alloys [in Russian], Moscow (1989).
9. Ye. E. Fel'dshtein and V. A. Nikolaev, Finish Machining of Parts of Powder Materials [in Russian], Minsk (1987).
10. V. D. Kuznetsov, Solid State Physics, Vol. 3 [in Russian], Tomsk (1944).
11. V. K. Starkov, Dislocation Concepts of Metal Cutting [in Russian], Moscow (1979).
12. P. A. Gorezko, Interrelationship of the Processes of Metal Cutting and Stretching [in Russian], Minsk (1959).
13. V. Ebeling, Structure Formation in Irreversible Processes: Introduction to the Theory of Dissipative Structures [Russian translation], Moscow (1979).
14. B. A. Kravchenko, Vestnik Mashinostr., No. 10, 53-56 (1991).
